PHYSICAL REVIEW E, VOLUME 64, 061405

Structure of ferrofluid dynamics
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The complete magnetodissipative structure of ferrofluid dynamics is derived from general principles, with-
out reference to the angular momentum of the ferromagnetic grains. The results are independent of most
microscopic details, and easily interpret two previous experiments. Both the Debye theory and the effective-
field theory by Shliomis are shown to be special cases of the new set of equations.
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I. INTRODUCTION [cf. the text around Eq3) for a more detailed discussion of
h]. We shall refer to this modification as theettified Debye
Since its inception about thirty years ago, ferrofluid phys-theory.”
ics has been very successful in obtaining a concise under- When the “negative viscosity” experiment of Baat al.
standing of its varying phenomei,2]. There are broadly [7] contradicted theDebye theory Shliomis referred to a
speaking three theories more widely applied to understandmore elaborate evolution equation fdr [8], derived from a
ing ferrofluids: thequasiequilibrium theory, Debye theory microscopic, statistical investigation of rotating magnetic
and EFT. The first was introduced by Rosensweig, who emparticles. Since the equation was solved with the assistance
ployed it in the first seven chapters of his bddkto account  of the effective field method, this second variant is com-
for a wide range of interesting effects. In this theory, themonly denoted as the EFT. The EFT improved the agreement
magnetizationM(r,t), being in steadfast equilibrium with to the “negative viscosity” experiment considerably.
the magnetic fieldM(r,t)=M®{H(r,t)], is not an indepen- Comparing both theories, and assuming that the EFT is
dent variable. the more rigorous one, valid for all experimentally relevant
With the detection of the enhanced shear viscosity in &requencies, Shliomis concluded that ebye theorys ad-
static magnetic fieldi3], however, it became evident that the equate only for small deviations of the magnetizatiéW
quasiequilibrium approximation is not always appropriate,<M?®% implying small frequenciesy 7y <1, of the magnetic
even in stationary flow configurations at static applied fieldsfield. In other words, it is valid only in the hydrodynamic
Starting from the intuitive picture of magnetic particles ro- regime. This conclusion is widely echoed in the ferrofluid
tating against the viscosity of the carrier liquid as the actuatommunity. For instance, when repeating the “negative vis-
source of dissipation, Shliomjg] included both the magne- cosity” experiment in a more elaborate set()], it was
tization M and the angular momentum densiyas addi- deemed necessary to interpret the results in the context of the
tional variables—though the latter is usually adiabaticallyEFT—although it is(in its original form rather more com-
eliminated afterwards. This theory accounts for magnetoplicated and unwieldy than theebye theory
dissipation, and contains an extra term in the momentum We do not think that this understanding of the respective
flux, range of validity does justice to tHgebye theoryWe believe
that the proper macroscopic theory for ferrofluids is very
(1) similar to the Debye theoryAs will be shown below, the
rectified Debye theorys in fact well capable of accounting
for the experimental data on “negative viscosities,” some-
which compensates the antisymmetric contribution from thevhat better than EFT. We also believe that EFT is in its
termH;B; if H andM are nonparallel. essence a microscopic theory, with necessarily rather specific
There are two versions for the temporal evolution of theinputs. In this case, they are: noninteracting, spherical, equal
magnetization, of which the first is a relaxation equation withsized, and rigid dipoles. As a result, in spite of it being a
a Debye-like relaxation termdM/ry=(M—M®Y) /7. This  rigorously valid theory, it is not always a realistic one.
is frequently referred to as tHigebye theoryln combination Generally speaking, a macroscopic theory consists of two
with Eq. (1), many magnetodissipative phenomena, espeindependent components. First is the structure as given by
cially the elevated shear viscosity, were successfully exgeneral principles and irreversible thermodynamics, and sec-
plained. Later work$5,6] brought this equation more in line ond is the set of the material-dependent parameters, i.e., the
with the prescriptions of irreversible thermodynamics byvalue of susceptibilities and transport coefficients. The main
substituting the termbM/r,, with one proportional to the purpose of this paper is to specify the structure of a dynamic
“effective field,” h=du/JdM, whereu is the energy density theory appropriate for ferrofluids. We shall not attempt to
provide the value for the material-dependent parameters—as
is the standard approach in macroscopic physics—Ileaving
*Email address: hwm@mpip-mainz.mpg.de them to be determined by suitable experiments, one set for
"Email address: liu@itp.uni-hannover.de each type of ferrofluid.
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When comparing our results with EFT and treetified  sM/M®%1 (yet still wr,<1 for all the otherr,). For these
Debye theorywe find both to be compatible with the general higher frequencies, and not in the hydrodynamic regime, is it
structure in the incompressible limit—although each posnecessary to introduce the magnetization as an independent
sesses a set of transport coefficients that may be too speaiariable. And this is also the reason why tleetified Debye
fied, and, therefore, inappropriate for the special ferrofluidtheory, with the magnetization as an independent variable,
under consideration. Especially, all off-diagonal transport cohas proven rather competent in accounting for the high-
efficients have been set to zero, a step that seems in needfoéquency experiment on “negative viscosities”—assuming
scrutiny. We shall point to evidences from a previous experithat the off-diagonal transport coefficients mentioned above
ment on magnetovortical resonanft0], which indicates either vanish or do not couple in.
that (at least one such off-diagonal coefficient is finite. We  We shall derive both the equation of motion for the mag-
shall also suggest experiments to directly measure some ofetization and the modifications in the other equations of
these parameters. motion due to the fact that the magnetization is turning in-

In the compressible limit, the derived structure opens uglependent. We do this by means of standard nonequilibrium
new channels for magnetic dissipation: All three previousthermodynamics, with the sole input of conservation laws,
versions of ferrofluid dynamic&FD) (i.e., Debye, rectified system symmetries, and the requirement that it reduces to the
Debye and EFT predict magnetodissipative coupling to the HMT for wry<<1. (This is similar in its ideology to an ear-
flow only in situations where the deviation of the magneti-lier work, in which the electrical polarization and its tempo-
zation SM is perpendicular to the external fiehtl Although  ral derivative were included as slow variabjéd]). The cho-
this may appear intuitive from the picture of internal rota-sen approach, in spite of the assumption of a single
tion, there is no convincing reason why magnetoviscous efeharacteristic time associated with the slow variable, clearly
fects should not also occur wheiM andH oscillate colin-  lacks specifics and is, therefore, fairly general. There are a
early, with a temporal phase lag. We have obtained an offfew noteworthy points as a result.
equilibrium contribution to the total momentum flux tensor,  First, in contrast to all previous derivations, no reference
which may be written a$M - M/ y. This is analogous to the was made with respect to the angular momentsiof the
term of Eq.(1), rewritable assM X H. Being a diagonal con- ferromagnetic grains. The result is, therefore, valid both for
tribution to the stress, this term is associated with a normasuspensions and for homogeneous magnetizable continua.
traction and affects compressible flows such as sound propa- Second, the theory holds irrespective of the type of mag-
gation[11]. netic relaxation, whether the individual magnetic moments

Next, we lay out our strategy for deriving the structure, arotate freely against the crystal axis, or are fixed, and the
strategy motivated by the observation that hydrodynamigarticle has to rotate against the viscous torque of the carrier
theories are successfully employed to account for slow, nonliquid (“N€el” versus “Brown”).
equilibrium phenomena of many condensed systems. The Third, the equations of motion remain valid even if the
proper theory for any isotropic fluid has its conserved quanmagnetic particles interact appreciably with each other.
tities as dynamic variables: the densities of energy, mass, and
momentum. These are also its thermodynam?c var_iables.. If II. DERIVATION OF THE EQUATIONS
the fluids are magnetizable, the thermodynamic variables in-
clude the magnetic field, so one also needs to add it to the set In this section the structure of ferrofluid dynamics is de-
of independent, dynamic variables. These are clearly the seived and presented. As outlined above, we the granularity of
of variables of thequasiequilibrium theoryby Rosensweig. the suspension is coarse grained, and the ferrofluid is treated
And indeed, as shown in Reffl2,13, this theory is well as a magnetizable continuum. The variables are the con-
capable of accounting for all low-frequency, nonequilibrium served quantities, the electromagnetic field, and the magne-
phenomena in ferrofluids if it is amended with the propertization as the only one being nonhydrodynamic. As a con-
dissipative structure—call the result HMT, frolydrody- served quantity, the concentratiqgn. (mass of magnetic
namic Maxwell theorylt accounts for many magnetodissi- particles over total volumeis a bona fide hydrodynamic
pative phenomena, including field-enhanced viscosjtl&}  variable, which must be included if the structure is to be
and the fluid’s spin-up via a rotating fie[d2]. complete. Because of the pronounced magnetophoresis and

As in any hydrodynamic theory, the HMT is valid for Soret effect, this remains so in spite of the long time needed
small deviations of the implicit degrees of freedom fromto establish concentration gradients. In addition, the case of
their equilibrium values, and in the low-frequency regimetwo conserved densities leads to surprising and little noted
w7,<1, wherer, denote their characteristic times. This in- complications. For instance, the incompressible limit is no
cludes especially the magnetizatith So HMT is valid only  longer associated witlW-v =0, because the magnetic par-
for SM<M®and wry,<1. This is the definition of the hy- ticles are much denser than the liquid, and changing the con-
drodynamic regime. However, the magnetic relaxation timecentration will change the total density even if both constitu-
my in ferrofluids is typically of order 10* s and is much ent densities are constant. So the thermodynamic energy
larger than all the othet; (=107 ° s), so the constraint densityu is taken as a function of the entropy denstyotal
wmy<l is the most severe and most easily violated onedensityp, concentration., magnetic field, magnetization
When this happeng.g., in the “negative viscosity” experi- M, and the momentum densig- pv,
men), one has to include the magnetization as an indepen-
dent variable to render the theory valid also éory,=1 and du=Tds+ udp+ udp.+tv-dg+H-dB+h-dM, (2)
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which defines the conjugate variables, especiallyith M where A=Ts+ up+ ucpet+v-0g, vijE%(Vivj+Vjvi). This

=B—H, or gH;/dM;=— §;; for given B, and the Maxwell is the structure of ferrofluid dynamics. To make the set of
relation,dH;/dM;=dh;/JB;, we have equations closed and complete one still has to determine the
dissipative fluxes®, j°, X, TI7. The form of the entropy
h=B®*{M,s,p;,p) —B=H®"—H. (3)  productionR as given in Eq(11) implies that they are linear

combinations of the forceﬁ’T,V,uc,—h,vﬂ ,Ukk,» such that
In equilibrium, u is minimal with respect toM, or h R is always positive (We takevf} = vjj— ) kkdij -) What
= gu/dM =0. SoB®{M) is the inverse function of the equi- now follows is the construction of the fluxes on the basis of
librium magnetization curveM®*{B). SubtractingM from  symmetry considerations and specific assumptions, the sec-
bothB®andB, we may also writh=H®%—H, where again ond of which are subject to experimental verifications or mi-
H®YM) (frequently referred to as the “effective fielglis the  croscopic scrutiny.
inverse function oM H).

The conserved variables satisfy continuity equations, A. Weak-field limit

If the applied magnetic field is weak, the system is almost
4 . ; . S
isotropic and we have the usual relations of diffusive entropy
and concentration current, viscous stress and especially the

p+V-(pv)=0, pc+V-(pv—j®)=0,

u+V-Q=0, g+V;(II;-1II7)=0; (5  magnetic relaxatiofi16,5],
the equations of motion fos andM are fP=kVT+& Ve, [P=EVuct&VT, (12
s+V-(sv—f°)=R/T, (6) NP =2nw+nud;, XP=-—¢h (13
M+ (v-V)M+MxQ=XP. (7) The transport coefficientsc, &, ké—&3,7,,7,, and ¢ are

positive functions of thermodynamic variables, in particular,
of the magnitude of the magnetizatibh Their actual values
-E]eed to be determined either experimentally or on the basis
of an appropriate microscopic model.

The relaxational ternXP in the magnetization dynamics
is proportional toh=H®-H (instead of toSM, or what we
have referred to as theectified Debye theojy For small
deviations from local equilibrium, it reduces to the Shliomis
expression proportional téM =M —M*®% but not in situa-
tions wheredM is large. The associated contribution to the
entropy production,—XP-h, is in either case positive
semidefinite.

When comparing our stress tensor with the traditional for-
mulation we note that the last term in E) is equivalent to
the magnetodissipative element as given in @&g.To facili-
tate further comparison we introduce the usual zero-field
ressurgq(p,T) while employing the independent variables

Assuming that no external electric field is applied, the ap

induction. Taking the ferrofluid to be dielectrically neutral
(i.e., D=E) the electric contributions to the equations of
motion are smaller by a factow(c)? than their magnetic
counterpartsq is the speed of light and a typical velocity.
Accordingly, we shall set it to zer¢See Refs[12,14] for the
cases where an external electric field is appliés result,
we may use the Maxwell equations in the static approxima
tion

V-B=0, VXH=0. (8

The fluxes in Egs(4)—(7) still need to be derived—although
the convective terms such asv or (v-V)M+M X Q are
already displayed, as they only redefine the unknown oneé3

,T,H, andM (assumin is constant Then the expres-
beingj® andXP in the present two examples. The fluxes are” ( %e n P

derived employing the so called standard procedure of hy§I0n In the square bracket of E) reads
drodynamics: Take the temporal derivative of E2), substi- 1 ea

tute u,Ts,up--+ using the above equations of motion, and Po+ §H2+J’ (1-pd,)M®{H")dH' —h-M. (14
most importantly, require that the resultant equation to hold 0

identically (cf Refs.[12,15 and references therginThis

yields the energy fluxQ, the momentum fluxl;;, and the The last termh-M is missing from previous works. It de-

entropy productiorR as scribes magnetodissipative effects if the off-equilibrium
component is parallel to the magnetization. This happens,
I1;; =11 =[A+H,By—u] &+ giv;—H;B; fo_r instance, wheM andH osqillate para_llel to ea_ch other
with a temporal phase lag. While the antisymmetric element,
+ %(thi—hiMj), (9) Eq (1), implies a finite tangential traction, the tetmM is

associated with a magnetodissipative normal force. This term
may be probed by measuring the pressure drop across an
interface between a ferrofluid and a nonmagnetic medium, if
5 . 5 5 it is exposed to an oscillating magnetic field. The expected
R=f"-VT+j~-Vuc—X"-h+1Iljvy, (1) effect is maximized when the frequency approaches the in-

Qi=Av;— T —uciy —v IR +3 [v X (hxM)];, (10
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verse relaxation timey— ¢/ x. The reason magnetodissipa- (15)] or with h [Eq. (16)], they can only be evaluated by an
tive normal stress has not been discussed until now may bgppropriate off-equilibrium experiment. It is noteworthy that
due to the present focus on incompressible flow problemshe same term exists in the dynamics of nematic liquid crys-
for which a normal stress simply renormalizes the pressureals [18], where it is responsible for the well-known “flow

while leaving the velocity profile unchanged. If, however, alignment” of the director field in an applied shear flow.
compressible flow profiles such as sound are considered, the

coupling between density oscillations and magnetization will
contribute appreciably to damping. This will be discussed in
a forthcoming publication. The modifications of the stress tensor as compared to the
standard expression have already been discussed at the end
of Sec. Il A. Here, the focus is on the relaxation equation for
the magnetization. It will be shown that both tizebye

If the magnetic field is no longer weak, the symmetrytheory and EFT can be embedded into the above formula,
characterizing the system is uniaxial, leading to a proliferaeach with a specific choice of parameters. They may be taken
tion of transport coefficients. This is where experimental in-as special cases of E¢#) and(15). (We are more precisely
put becomes imperative. For instance, each of the coefficonsidering therectified Debye theorwhich, however, re-
cients of Eq.(12) turns into three, as ik— «;;+xM;M;  duces to thdDebye theoryor linear constitutive relations, or
+ Kk« €ijxMy. Similarly, the two viscosities turn into seven. for small deviation of the magnetization from local equilib-
We shall not present all these complications here because thgim.)
set of isotropic coefficients needs yet to be measured.
(Strictly speaking, if the directions &l andH do not coin-
cide, the system is biaxial, which represents an additional
and considerable complicatiorNevertheless, we would like ~ In the first variant of his description, Shliom{ig] intro-
to consider the complete uniaxial form %P, asM belongs duced a phenomgnologlcal equat_|or) M'r, with a I'lne.ar'
to the best studied aspects of ferrofluid physics. Due to thg)ebye—llke relaxation tgrm. After elimination of the intrinsic
Onsager symmetry relation, counter terms necessarily appegF'gUIar momentum, this equation reads
in the stress,

Ill. COMPARISON WITH EXISTING THEORIES

B. Strong magnetic fields

A. The Debye theory

dMm 1 M X (M X H)
5 . dp XM= (MM — ——— (17)
Xi :_(gélj+gHMIM]+gXEIJkMk)h]+)\1Mlvkk+)\2MJvlj 7B me
+)\3MiMjMkv?k+)\4€iijkM/U?/r (15  where @/dt)=d,+(v-V), 75 is the Brownian relaxation

time, and¢e the volume concentration. Assuming small de-
viation of the magnetization from local equilibrium,

I ={ 720kt [M1= 5 (Ao M2Ng) IMihi 6+ 27103 SM/M®%<1, one obtains to leading order

(Me9)?

GH H

Med  [gMed Med
( M. (18

—M8=_——
M-M H h+

+ 2 Ma[Mj(Mh);+ (i = ])]. (16)

Although these expressions appear complicated, one muHSing this rslztiorr\]infEl?(;?). and%lS), theDebye theory17)
realize that the uniaxial, and not the isotropic, case is thés recovered by the following choice:
generic one: If we tak® as small to arrive at the isotropic

case, we must for consistency also neglect all terivi? in M=A=R3=he={x=0, (19)
the Maxwell stress, which is considered too crude an ap-
. . 1 M®d (Meq)Z
proximation to be employed frequently. _ = 4 (20)
The appearance of the paramefgiin XiD implies differ- s H 6710’
ent relaxation times for the parallel and perpendicular com-
ponent of the magnetization. The value of the perpendicular ) 1 (oM M| (M®9)2
time, for a series of five different ferrofluids, is provided in {(MEY=— - - (21)
g\ oH H 6710
Ref. [17].
In both Debye theoriesthe EFT, or the isotropic case o
above, the only velocity gradient changiMyis €. In con- B. Effective-field theory
trast, Eq.(15) shows that a compressional flawy,, or more On the basis of a kinetic equation for rotary diffusion,

importantly, an elongational onei‘} will do this too. The Martsenyuk, Raikher, and Shliomig8] constructed the
coefficients\; are material dependent and need to be meaFokker-Planck equation for the probability distribution of the
sured for each ferrofluid. They are reactive transport coeffiparticle’s orientation. Thereby, the authors relied on the ide-
cients, because they do not enter the expression for the emlizing assumptions that the ferrofluid is composed(ipf
tropy production(11). Nevertheless, as these coefficientsspherical(ii) monodispersedii) noninteractingiv) rigid di-
appear in combination either with velocity gradiefisq.  poles. Form the resultant infinite hierarchy of equations for
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the momenta oM, a separate equation for the magnetization
is deduced by employing the method of the effective field.

Thereby the magnetization

&

M IMs£(§e)§e

(22

is taken to be a function of the dimensionless, effective field
&= (mH®Y/(kgT), with M4 denoting the saturation magne-
tization of the ferrofluidm the magnetic moment of an indi-

vidual particle,£(x) = cothx—1/x the Langevin function and

kg the Boltzmann constant. In terms of the actual nondimen-

sional magnetic field=(mH)/(kgT), the effective field is
governed by the ordinary differential equation

d & & 1 L,
- (1——3£e X(EXE, (23
Py 2 EX(&X9),

where L= L(&.). Solving this equation fo, at given §
determines the magnetization via E@®2) in parametric
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FIG. 1. Reduced viscosityy,=A ,(H,f)/ 7,(0,0) at the field
oscillation frequencyf =52 Hz (squares 345 Hz (circles, and
645 Hz (triangleg. Large black symbols denote the experimental
data as measured in Rdf7], open symbols are effective-field
theory as gleaned from Fig. 4 of Ba@i al. [7]; small black sym-
bols are calculated from Eqgé7) and (13).

(which uses cobalt particlgsthe neglect of particle interac-
tion is certainly doubtful: It starts to become questionable at
concentrations aroungd= 3%, yet the negative viscosity ex-

form. Eq.(23) can be recast, without approximation, in the Periment was carried out gt=20%.

following, rather more explicit form:

M

e X

M-h
M2
(24)

3 M h
X~ e

d
ZTB[aM_QXM

with x=mMs/(3kgT) as the initial susceptibility. Again,
Eq. (24) is a special case of EqS) and (15) with the fol-
lowing particular choice:

N1=N=N3=Ng={x=0, (25)
_ .t 3 M 26
Z—Z—TB X~ el (26)
31 1| M )
"2 7wl Y @

IV. EXPERIMENTAL EVIDENCES

A. Negative viscosity

On the basis of th®ebye theoryShliomis and Morozov

Employing expressions from the weak-field case of Sec.
Il A, we reevaluated the experiment and found convincing
agreement, see Fig. 1. We toK = — ¢h, and 1.6 ms for the
coefficient{/y — as given in Ref{7] and independent dfl
or M. Furthermore, for lack of pertinent ferrofluid specifica-
tions, we also took théM®q{H) as given by the Langevin
function, used the saturation magnetizatdg=127 G, and
the initial susceptibilityy=1 to fit the data(small black
symbols. For the sake of comparison we also provide the
outcome of the EFT as gleaned from Réf|. To that end we
used their expression, = (3/2)¢g for the reduced viscosity.
The necessary values fgr=g( &g, w 75) were compiled from
Fig. 4 of Ref.[7] with £,=5.25x10 3H (Oe) and wrg
=10"2f (Hz).

A few points need emphasizing here. First, we freely ad-
mit that modifying some of the above parameters would
make EFT appear better, or theectified) Debye theory
worse. But engaging in a lengthy quibbling would miss the
actual and rather more important message, namely, that the
original experimental reason to mistrust thebye theoryis
false.(Theoretically, there never was any reason to give De-
bye less credit than EFJT.

In fact, the more serious criticism of the above fits is not
in a specific value chosen for any parameter. Rather, it must

[19] predicted that a ferrofluid flow through a pipe may bebe reserved for the sweeping approximation inherent both in
accelerated under the influence of an oscillating magnetithe weak-field case and in EFT. For the given elevated field
field, by pumping energy from the electromagnetic field intostrength, we need to justify why we did not used the expres-
the flow. The resulting enhanced through-flow rate was intersion of Sec. Il B instead, especially the term. The reason
preted as a decrementy, of the effective shear viscosity, is simply that most of the additional parameters do not as yet
referred to as “negative viscosity.” This effect was later ex- have a known value.

perimentally verified by Bacret al. [7] and by Zeuneet al. More generally speaking, it is important to be aware that
[9]. When the measurements &fp, did not agree with the we have at our hand a healthy macroscopic theory capable of
prediction, Shliomis employed the EFT instead. We do notaccounting for all phenomena of ferrofluids. The structure of
find this approach convincing: Although the rigid dipole ap-the theory is given in Sec. Il, its parameters need to be mea-
proximation may be considered valid in the experimentsured, ferrofluid for ferrofluid.
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PEREN ' ' ] One such experiment, which is at the same time a direct

(a) solid rotation 1 b \ (b) shear flow
Q=157 Hz

{

o
T

evaluation of\,, is given by measuring the off-equilibrium
magnetizatiorM ; in a Taylor-Couette apparatus, exposed to
a static magnetic field perpendicular to the rotation axis. If
both cylinders are rotated independently with angular fre-
quenciex); and(),, one may perform a continuous transi-
tion from a rigid rotation 2,=.2,, i.e.,vﬂ =0) to a simple
shear (0, #Q,, i.e., vioj #0) while keeping the vorticity()
constant. That way the recorded valuehdf vs (01— (5)
yields the coefficieni ,.

Alternatively, information o\, can be obtained from the
FIG. 2. Black circles denote measured transverse magnetizatiogounter terms in the stress tensor, see @6), e.g., in the

[10J; the solid lines are computed from E45) with A ,=2.54, and  experiment suggested below Efj4), or the one in Ref20].
the dashed line with,=0 (traditional approach Both lines nec-

essarily coincide in the left picture az§j =0 there.

transv. magnet. M (G)
n wW £

o

o
o
(=]
=L
o
[~]
ES

frequency ratio «/Q frequency ratio w/Q

V. CONCLUSION

B. Magnetovortical resonance The general structure of the hydrodynamic equations for
ferrofluids is derived here, with the gain in rigor paid by a
loss of specific information on the transport parameters. We
Yid not provide the numerical values of the transport coeffi-
cients here, nor their dependence on the thermodynamic vari-
ables. To complete the theory, therefore, they must be deter-
mined by a series of experiments. An alternative way is to
this experiment, a ferrofluid under solid body rotation, andcalculate them_frqm_an apprppriate microscopi_c _model, such
another under shear, are exposed to an oscillating magnel‘?'t,s the EFT within its _specn‘led range of Va“d'.ty‘ Conse-
field, while M, , the component of the magnetization tranS_quently, the macroscopic theory presented here is not a com-

verse to the field, is recorded. In the case of the solid bodgﬁfg?r of EFT, as both theories are complementary to each

rotation (Q#O,viO:O), a sharp resonance is observed, see - :

. ool . ) The validity of our approach is corroborated by the ease
Fig. 2@); while the signal drastically flattens out for the ith which . . iated with

hear flow case(t +0u? #0), see Fig. ). The difference with which two previous experiments associated with mag-
S . "l I C . netodissipation:“negative viscosity” and “magnetovortical
between them is clearly the finite elongational floﬂ/. Fit- resonance,” are interpreted. Predicted phenomena include

ting the decay oM, as shown in Fig. @) with Egs.(7) and  magnetodissipative normal traction, and dependence of the
(15) yields \,=2.54 for the ferrofluid at hand. magnetization dynamics on elongational flows.

Since both theDebye theoryand EFT set\,=0, the |5 gpjte of the complete lack of microscopic specifics in
above explanation was not available, so an auxiliary and Mithe present derivation, the resultant theory does have some
croscopic explanation was given in REF0], which relies on  yegyrictions that we need to keep in the back of our mind.
a rovy induced modification of th<=T relaxatipn ting : Shear_ They arise due to the assumption we made of a unique char-
flow induces fracture of dynamical particle chains, whichcteristic time associated with the slow variable when gen-
leads to a reduced effective dipolar interaction between th%ralizing the HMT. As a result, any microscopic features
particles. This implies thaf; (and with it ;) are functions (such as polydispersitythat influence this time are to be
of vj}, cf. Eq. (15). In contrast to the macroscopic, linear handled with some care. For instance, a ferrofluid consisting
explanation given by\,, this one here is a quadratic effect of two populations, each with a distinct relaxation time, will
that exists only if both thermodynamic forchsandvj} are  not be well accounted for at higher frequencies, outside the
finite. And it amounts to claiming that althougt? does not  hydrodynamic regime(At lower frequencies, FFD is com-
depend omﬂ linearly, it does so nonlinearly, cf. E@5). It  pletely equivalent to HMT13], which we know is meant to
appears prudent to exhaust all linear explanations first, beaccommodate arbitrarily diverse characteristic times of all
fore postulating a nonlinear one. Besides, both theories are ithe implicit degrees of freedom. Nevertheless, one may no
fact different otherwise, and should be checked against futonger interpretry,, as a unique relaxation time, as it then
ther experiments. contains contributions from all populations presgnt.

Equation(15) shows that in addition to the vorticit2,
compressional and elongational flow may also contribute t
the dynamics oM. For a complete theory, we still need an
estimate of the coefficients;, most reliably via experimen-
tal input. One such measurement faralready exists, which
is the experiment on the magnetovortical resondd€g In
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